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Abstract

In this paper, we revisit the joint probabilistic data as-
sociation (JPDA) technique and propose a novel solution
based on recent developments in finding the m-best so-
lutions to an integer linear program. The key advantage
of this approach is that it makes JPDA computationally
tractable in applications with high target and/or clutter
density, such as spot tracking in fluorescence microscopy
sequences and pedestrian tracking in surveillance footage.
We also show that our JPDA algorithm embedded in a
simple tracking framework is surprisingly competitive with
state-of-the-art global tracking methods in these two appli-
cations, while needing considerably less processing time.

1. Introduction
Despite significant technical advances made in auto-

mated tracking of moving objects, multi-target tracking re-
mains a challenging task. Within computer vision, applica-
tions of multi-target tracking are exemplified by the tasks of
surveillance of a crowd of pedestrians [5, 25, 28, 29, 33, 44],
and of tracking dense cellular and sub-cellular structures in
biological sequences [11, 35] (Fig. 1). The main challenge
in these applications is to estimate the state of an unknown
and time-varying number of targets from a set of noisy and
uncertain measurements. Targets often remain undetected
due to occlusion, strong variation in appearance or other
detector failures. Moreover, the observations generally in-
clude a set of spurious measurements (clutter) not originat-
ing from any target. Therefore, one of the crucial steps in
the development of a reliable multi-target tracking systems
is data association, which assigns the detected measure-
ments to the existing targets in the presence of noise, clutter
and detection uncertainty.

Joint probabilistic data association (JPDA) [16], is an el-
egant method of associating the detected measurements in
each time frame with existing targets using a joint proba-
bilistic score. Proposed in the early 1980s, it is widely ac-
cepted as a reliable data association technique and it has in-
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Figure 1. Two sample frames from challenging multi-target track-
ing applications: Pedestrian tracking in a surveillance camera
(left) and spot tracking in fluorescence microscopy (right).

fluenced a degree of the recent literature in the visual track-
ing community [11, 28, 29, 32, 35, 39, 42]. However, naive
JPDA suffers from combinatorial complexity as it consid-
ers all possible assignments of measurements to targets to
calculate the joint probabilistic score. Therefore, with an
increasing number of targets and/or clutter, the technique is
intractable in almost all practical applications without the
use of heuristics such as gating. Even when gating is used,
for any given gate size there will be a degree of target and/or
clutter density that renders the method impractical. As a re-
sult, usually its application domain has been restricted to
multi-target tracking scenarios with few, well separated tar-
gets.

In this paper, we revisit the JPDA formulation but ad-
dress the issue of its complexity by leveraging the latest
developments in finding the m-best solutions of an integer
linear program. We propose a computationally tractable ap-
proximation to the original JPDA algorithm and show that it
takes only a fraction of the time to compute without forfeit-
ing performance. We demonstrate its applicability in prac-
tical applications with numerous targets and measurements
such as fluorescence spot tracking in biological sequences
and pedestrian tracking in crowded scenes. Moreover, we
show that our JPDA algorithm, along with a simple tracking
framework, can surprisingly perform on par, or even out-
perform state-of-the art multi-target tracking methods with
a considerable gain in processing time.

We make the following contributions: (i) We reformu-
late the calculation of individual JPDA assignment scores
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as a series of integer linear programs (ILPs) and approxi-
mate the joint score by the m-best solutions. This allows
us to obtain an extremely accurate estimate of the complete
JPDA by only considering a tiny fraction of its entire solu-
tion space. (ii) We propose a generic and highly efficient
way to calculate the m-best solutions for any binary lin-
ear program by using a binary tree partition method. (iii)
With a computationally tractable JPDA solution, we extend
our implementation to multi-frame (MF) JPDA to increase
robustness of data association. To the best of our knowl-
edge, this is the first practical implementation of MF-JPDA
for real-world applications. (iv) We show state-of-the-art
performance on cell and pedestrian tracking using only a
fraction of the computational time of previous methods.

2. Related Work
One of the earliest approaches for online tracking (or

state estimation of a dynamic target) is the Kalman fil-
ter [21]. This recursive Bayesian filter computes the opti-
mal state posterior when dealing with linear observation and
transition models as well as Gaussian noise. In contrast, the
particle filter [14] approximates the state density by a finite
number of samples (or particles). Both methods are inher-
ently designed to deal with one target only. To manage a
scenario with multiple objects, typically a greedy or local
assignment process is used to resolve data association [8].

The multi-hypothesis tracker (MHT) [11, 12, 34] is a
more principled formulation for data association based on
the Bayesian framework. It hypothesizes all possible data
associations over time and uses measurements that arrive
later in time to resolve ambiguities in the current frame.
However, the complexity of the algorithm and the compu-
tational costs of this exhaustive search are considerable. In
practice, heuristic pruning and merging techniques are usu-
ally combined with the MHT to restrict the exponentially
growing number of hypotheses. In contrast to the (multi-
frame) JPDA that maintains the contributions from all po-
tential hypotheses from all tracks, the MHT prunes out in-
valid hypotheses for each track independently and deleted
terms are completely discarded [7], making it impossible to
recover from errors.

The joint probabilistic data association (JPDA) fil-
ter [16], which we review in more detail in the next sec-
tion, is another approach for finding an optimal target-to-
measurement assignment. Unfortunately, in its pure form,
its computational complexity prohibits many real-world ap-
plications with a large number of targets. To alleviate the
computational burden, different approximations of JPDA
have been proposed. However, many of them use heuris-
tic techniques and often sacrifice the tracking accuracy to
make their algorithm computationally tractable [2, 38]. Oh
et al. [31] proposed a more principled JPDA approxima-
tion based on Markov chain Monte Carlo (MCMC) data

association. While such sampling schemes offer a practi-
cal approach to approximating high-dimensional problems,
they may suffer from poor mixing leading to slow conver-
gence and the random elements can make reproducing ex-
periments difficult.

Many of the most successful recent approaches in the
vision literature [e.g. 5, 10, 24, 28, 32, 46] are so-called
offline, or batch processing techniques and follow a rather
different strategy from the ones described above. Typically,
a sequence of frames is considered at once and the state and
data association of all targets are inferred jointly by optimiz-
ing a predefined objective. The main differences between
methods lie in the exact formulations of the objective and
the trade-off between modeling accuracy and tractability.

Discretizing the state space and making simplifying as-
sumptions about conditional dependences reduces the com-
plexity of multi-target tracking and allows one to achieve
the global optimum by LP-relaxation [20, 43], min-cost
flow [10, 32, 46], or k-shortest paths algorithms [5].
Moving to a continuous state representation [28] or in-
cluding more sophisticated terms, such as exclusion con-
straints [29], leads to more complex optimization prob-
lems that can only be solved to local optimality. Fur-
ther examples that belong to that second class include
quadratic boolean programming [24], generalized clique
problems [45], maximum weight-independent set [9] and
many more. While such methods show remarkable perfor-
mance, the introduced delay in the output limits their appli-
cability to offline applications in surveillance or video anal-
ysis.

In this work we revisit JPDA, a classical online ap-
proach, and demonstrate its power when combined with
recent advances in optimization. Surprisingly, when com-
bined with our novel principled approximation method, it
is able to outperform many recent techniques while taking
only a fraction of their time to process.

3. Joint Probabilistic Data Association
Let x1

t , ..., x
N
t and z1

t , ..., z
M
t be the states of all N tar-

gets and all M measurements at time t, respectively. The
state vector xjt contains all relevant dynamic information
about the jth target, e.g. its position and velocity, while the
measurements contain what can be directly observed from
the sequences, e.g. noisy and cluttered detected positions.

Let pt(d
j
i = 1), simply denoted by pt(d

j
i ), be the assign-

ment (or data association) probability representing that the
measurement index i ∈ [M ]0 , {0, 1, ...,M}1 is generated
by target j ∈ [N ] , {1, ..., N} at time t. Here, 0 is a place-
holder for a ‘dummy’ (or missed) detection. Under a linear
Gaussian model, pt(d

j
i ) is obtained as follows:

1For notational simplicity, we assume that all measurements can be
assigned to all targets. However, if JPDA is followed by gating, only a
subset of measurements can be assigned to each individual target.



pt

(
dji

)
∝
{

(1− pD)β if i = 0,

pD · N (zit; x̂
j
t ,ΣS) otherwise,

(1)

where x̂jt is the predicted position of the jth target at time t,
pD is the detection probability and β is the false detection
(clutter) density. Here, N (·) is the normal distribution and
ΣS is the innovation covariance matrix of the Kalman filter.

The joint probabilistic data association (JPDA) algo-
rithm calculates a marginalized probability qt(d

j
i = 1), sim-

ply denoted by qt(d
j
i ), on the joint data association space Θ.

By definition, Θ consists of all possible combinations of
measurement-to-target assignments such that (a) each mea-
surement (except for the dummy hypothesis i = 0) is as-
signed to at most one target, and (b) each target is uniquely
assigned to a measurement. This space can be described by
a set of binary vectors as follows:

Θ =
{
θ =

(
dji

)
i∈[M ]0, j∈[N ]

∣∣∣∣ dji ∈ {0, 1} (2)

∧
∑N
j=1 d

j
i 6 1, ∀i ∈ [M ] (a)

∧
∑M
i=0 d

j
i = 1, ∀j ∈ [N ]

}
, (b)

where |Θ| =: nh is the total number of joint assignments
and θ ∈ Θ ⊆ BN×(M+1) is a binary vector representing
one possible solution to the data association problem.

Let Θj
i ⊂ Θ be a subset that includes all hypotheses that

assign the measurement i to target j such that Θj
i = {θ ∈

Θ | dji = 1}. The JPDA probability qt(d
j
i ) is calculated by

marginalizing over this subset:

qt

(
dji

)
=
∑
θ∈Θj

i

p(θ), (3)

where

p(θ) =
∏

∀r∈[M ]0
∀k∈[N ]

(
pt
(
dkr
) )dkr

. (4)

Finally, all joint data association probabilities qt(d
j
i )i∈[M ]0

are normalized and used to update the jth target’s state [16].
The accuracy of JPDA can be enhanced by taking the

assignments in the subsequent frames into consideration
(analogous to so-called Kalman smoothing vs. Kalman fil-
tering). This extension, known as the JPDA-smoothing [26]
or multi-frame JPDA (MF-JPDA) [37], conditions the prob-
ability qt(d

j
i ) on both future and past information. How-

ever, this exacerbates the combinatorial explosion, and so
has almost never been used in a practical application.

4. Our Solution
Even the traditional (single-frame) JPDA is often in-

tractable because the sum over all possible combinations in
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Figure 2. Rewriting the data association in Eq. (6) as an ILP. In this
example, two targets (circles) and two measurements (I,II) and a
dummy node (0) yield a 6×6 constraint matrix A that ensures
that at most one incoming edge for each measurement (a) and that
exactly one outgoing edge for each target (b) can be selected. Note
that equality constraints (6b) are introduced by including negative
entries so that both 6 and > constraints are enforced. The dummy
node corresponds to a missed detection.

Eq. (3) involves a potentially huge number of terms. Our
approach to address this is to approximate qt(·) as the sum
over the m highest probability hypotheses, which in most
cases account for all but a tiny fraction of the total probabil-
ity mass:

qt

(
dji

)
≈
∑
θ∈∆j

i

p(θ). (5)

Here, ∆j
i = {θ ∈ Θm | dji = 1} and Θm ⊂ Θ is a subset

of the m most likely hypotheses (|Θm|=m�nh). In other
words, if we sorted all possible solutions in Θ according to
their association probability qt(·), Θm would contain only
the top m entries that carry most of the probability mass.

We approach this in two stages. First, we reformulate
the data association problem as an integer linear program
(ILP). Solving this ILP will yield the best (i.e. maximum
likelihood) data association. We then show how the sec-
ond, third, etc. best solutions can be obtained successively
in an efficient manner, yielding an approximation of qt(d

j
i )

in Eq. (5) based on the m-best solutions of the problem
maxθ∈Θ p(θ).

4.1. Data association as an integer linear program

We first rewrite the data association problem as a mini-
mization:

C∗1 = min
θ∈Θ
− log (p(θ)) (6)

= min
∑

∀r∈[M ]0
∀k∈[N ]

−
(

log
(
pt(d

k
r )
)
· dkr
)

s. t.
∑Nt

k=1 d
k
r 6 1 ∀r ∈ [M ] (a)∑Mt

r=0 d
k
r = 1 ∀k ∈ [N ], (b)

The constraints (6a), (6b) ensure that at most one target is
associated with each measurement and exactly one mea-
surement is associated with each target. The value of θ
which attains the minimum value of (6) is the maximum



likelihood data association. It is easy to see that this prob-
lem can be reformulated exactly as an integer linear pro-
gram (ILP) [40]:

C∗1 = min
y∈{0,1}n

CTy s.t. Ay 6 b, (7)

where y = [y1, · · · , yn]T is a binary vector of length n =
N(M + 1) such that yl = dkr , and C = [c1, · · · , cn]T is the
cost vector with cl = − log

(
pt(d

k
r )
)
. Fig. 2 illustrates the

form of A, y and b for a toy example.

5. Approximation by the m-best Solutions
Solving the ILP in Eq. (7) is straightforward using LP-

relaxation2. However, recall that we seek, not just the best
assignment, but the best m solutions to obtain an accurate
approximation of the JPDA assignment probability. Let C∗m
denote the mth smallest objective value, and y(m) the solu-
tion that attains this value:

C∗m = CTy(m), (8a)

y(1) = argminy C
Ty, s. t. Ay 6 b, (8b)

y(m) = argminy C
Ty, s. t.

{
Ay 6 b,
∀k<m : y 6= y(k).

(8c)

The inequality constraints in Eq. (8c) can not be handled by
general ILP solvers. However, since y is binary in our case,
the constraints y 6=y(k) can be reformulated as

〈y,y(k)〉 < ‖y(k)‖1, (9)

i.e. y differs from y(k) in at least one bit3. As a result, a
naive approach to find the m-best solutions suggests itself:
for k=1, ...,m: (i) solve an ILP using standard solvers such
as [18] to obtain y(k); (ii) add constraints (9) and repeat.

This kind of approach has been taken in some previous
work for finding m-best solutions, [e.g. 3, 4]. However, the
number of constraints grows with k. In the next section we
present a much more efficient strategy that removes redun-
dant constraints and inactive variables, thereby simplifying
the problem with each kth-best iteration instead of aggravat-
ing it, yielding sub-linear increase in running time.

5.1. Binary Tree Partition method

Instead of iteratively adding new constraints, Fromer and
Globerson [17] show that m-best problems can be solved
by iteratively solving a series of constrained second-best
problems. Solutions are found in order from k = 1 (best)
to k = m. Finding the kth-best solution assumes that the
feasible set Fk has been partitioned into k−1 disjoint sets
F1
k , ...,F

k−1
k . The kth solution y(k) is found by searching

2The relaxation is tight because A is an assignment matrix (cf. [19]).
3In practice, 〈y,y(k)〉 ≤ ‖y(k)‖1 − 1 is used instead.

Algorithm 1: Binary Tree Partition for JPDA
input : C,A,b,m
output: y(k), k = 1, . . . ,m

1 y(1) = argminy CTy s. t. Ay 6 b;
2 y(2) = argminy CTy s. t. Ay 6 b, 〈y(1),y〉 < ‖y(1)‖1;

3 Select arbitrary j ∈ {i|y(1)
i 6= y

(2)
i };

4 F1
3 = {y ∈ Bn|Ay 6 b, 〈y,y(1)〉 < ‖y(1)‖1, yj = y

(1)
j };

5 F2
3 = {y ∈ Bn|Ay 6 b, 〈y,y(2)〉 < ‖y(2)‖1, yj = y

(2)
j };

6 y1
3 = argminy∈F1

3
CTy;

7 y2
3 = argminy∈F2

3
CTy;

8 for k = 3, . . . ,m do
9 lk = argminl C

Tyl
k, y(k) = y

lk
k ;

10 F l
k+1 = F l

k, y
l
k+1 = yl

k,∀l < k, l 6= lk;
11 Select arbitrary jk ∈ {i|y(lk)

i 6= y
(l)
i };

12 F lk
k+1 = F lk

k ∩ {y|〈y
(k),y〉 < ‖y(lk)‖1, yjk = y

(lk)
jk
};

13 Fk
k+1 = Fk

k ∩ {y|〈y(k),y〉 < ‖y(k)‖1, yjk = y
(k)
jk
};

14 Remove constraints 〈y(k),y〉 < ‖y(k)‖1 from F lk
k+1;

15 Remove constraints 〈y(lk),y〉 < ‖y(lk)‖1 from Fk
k+1;

16 yl
k+1 = argminy∈Fl

k+1
CTy, l ∈ {lk, k};

all sets. To proceed to the (k+1)th solution they add the con-
straint y 6= y(k); however this is redundant for all sets ex-
cept for F lkk , which contains y(k). Therefore, the previous
solutions can be retained for all sets except this one, which
is partitioned into two disjoint sets. The optimal value of
the objective over these two sets can then be obtained via
solving two second-best problems. This results in k disjoint
sets, whose union is the feasible set of (k+1)-best problem,
and the process is repeated.

As [17] is designed for multi-label integer programming
(IP), they need a specific IP solver that can handle con-
straints like y 6= y(k) and yi 6= y

(k)
i . However, in our case

the variables are binary, so we note that 1) the constraint
y 6=y(k) is redundant in all sets except that containing y(k),
and 2) yi 6= y

(k)
i fixes the value of yi as yi = 1 or yi = 0.

This is an assignment rather than a constraint and there-
fore reduces the dimensionality of y by 1. Combining these
observations leads to our streamlined form of Fromer and
Globerson’s approach, summarized in Alg. 1.

5.2. Calculation of m

In the previous sections we presented an efficient way to
obtain the m-best solutions of an ILP with the assumption
that m is known. However, we want to calculate m such
that the probability mass error between the approximated
and exact JPDA scores for all target-to-measurements as-
signments is less than a small threshold ε:

E =
∑
θ⊆Θ

p(θ)−
∑
θ⊆Θm

p(θ) < ε. (10)



5 15 25

5

15

25

x−coordinate

y−
co

or
di

na
te

5 15 25

5

15

25

x−coordinate

Figure 3. Left: Noisy and cluttered detections. Right: Ground
truth trajectories (solid lines) versus the tracking results (circle
markers) using 3F-JPDA100.

It can be proved4 that a tight upper bound for this error is
E 6 (nh −m) exp(−C∗m). Therefore, for any case, m can
be automatically calculated such that this tight upper bound
error is less ε.

6. Experimental Results
6.1. Evaluation on simulations

To evaluate the speed and accuracy of our m-best JPDA
tracker, we first apply it on a simulated scenario with
three moving targets crossing each other (Fig. 3). Each
target’s state is given by its position and velocity xt =
(xp, ẋv, yp, ẏv) and the motion is modeled by the discrete
update equation xt = Fxt−1 + η, where F = diag[F1,F1]
is a constant velocity model and η is Gaussian noise with
covariance Q = diag[Q1,Q1] representing unmodeled ac-
celeration. F and Q take their textbook values as in:

F1 =

[
1 τ
0 1

]
, Q1 = qd

[
τ3/3 τ2/2
τ2/2 τ

]
, (11)

where τ = 1 is the sampling period and qd = 0.02 is the
process noise parameter. Both noisy and spurious detection
points zt = (x̂p, ŷp) were generated according to a detec-
tion probability pD = 0.7 with added zero-mean Gaussian
noise with covariance qm = 0.1 and a uniform clutter den-
sity β with a false positive rate λ=3. To simulate long term
occlusion, when multiple targets come very close to one an-
other (distance less than 1), only one of them is detected and
the others are missed (see Fig. 3 left). In the following, we
report averaged results over 100 Monte Carlo experiments.
We evaluate based on observations from individual frames
(JPDA, JPDAm) and by including neighboring frames (3F-
JPDA, 3F-JPDAm).

Fig. 4 (left) represents the probability mass approxima-
tion error E from Eq. (10), which is introduced by our ap-
proximation. As expected, the error decreases exponen-
tially with growing m. Empirically, the error reaches less
than 1% after m>30 best solutions. This figure also shows
how the averaged processing time (green line) increases
sub-linearly with m. In this experiment, our 3F-JPDAm

4Proof provided in the supplementary files.
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Figure 4. Left: Probability mass approximation error E (cf. Eq. 10)
and processing time in seconds for 3F-JPDA. Right: Tracking er-
ror measured as the OSPA-T location error versus the number of
m-best solutions for JPDAm and 3F-JPDAm. In both cases the
solution converges to the minimum error for small m.

requires less than 2 seconds for any value ofm6100 whilst
3F-JPDA takes on average 57 seconds per simulation run
to complete. To show how the approximation error affects
the tracking results, Fig. 4 (right) depicts the location er-
ror of the OSPA-T metric [36], representing both track ac-
curacy and label switching as a single number, versus the
value of m. This confirms our claim from Eq. 5 that by
selecting the best few solutions, we can reach the same ac-
curacy as JPDA and 3F-JPDA, but with considerably lower
processing time. Note that we deliberately designed a com-
putationally tractable scenario for 3F-JPDA and compared
with our 3F-JPDAm over 100 experiments. The difference
in processing time can be significantly larger in real-world
applications, as we will see in the following section.

6.2. Evaluation on real-world data

Implementation details. The core JPDA algorithm does
not include a mechanism to deal with a time-varying num-
ber of targets. A principled extension of JPDA, known as
integrated JPDA (IJPDA) [13], has been proposed for that
purpose. However, IJPDA adds a considerable computa-
tional complexity to the JPDA algorithm. For simplicity, we
use a heuristic initiation and termination scheme proposed
in [35]: (i) any detection that is not claimed by an existing
target is initiated as a new target; (ii) a track is terminated
if the number of consecutive missed detection assignments
reaches a specified threshold Td. In this latter case the esti-
mated states for this track are deleted from the frame where
the missed detection first occurred. In addition, all tracks
with a life span shorter than a threshold LS are removed.
We will show that even with this simple scheme, we can
perform as well as, or even better than, the state-of-the art
methods in real-world applications using only a set of sparse
detections and a simple dynamic model.

For practical reasons we make use of a gating procedure
that excludes the set of detections whose Mahalanobis dis-
tance exceeds a predefined threshold dG. As noted in Sec. 1,
gating can make JPDA tractable in cases where the num-
ber of interacting targets and the measurements inside their
gates are small. Thus we only use our approximation when



the estimated number of possible assignments exceeds a
threshold. Since the total number of hypotheses nh cannot
be accurately predicted when JPDA is followed by gating,
we cannot make direct use of the calculation in Eq. (10).
Therefore, we fix m= 100 throughout all our experiments.
In our experience this value is enough to reach the same
tracking accuracy as complete JPDA.

Complexity and runtime. The time complexity to find
the kth-best solution of an ILP for the naive approach
(see Sec. 5) is O((A+ k)1.5B2), where B = MN and
A = M +N [30]. This becomes computationally pro-
hibitive for large k. In contrast, our proposed approach
takes O(A1.5(B−Dk)2) time, where Dk is a monotonic
increasing function of k. This yields a sub-linear increase
in running time as k increases (cf. Sec. 6.1, Fig. 4).

Our code was implemented using MATLAB and was run
on a desktop PC (Intel Core i7− 4790 , 3.60 GHz CPU, 16
GB RAM), making use of the Gurobi ILP solver (version
5.6.3, 64bit). We report the average processing time per
frame of the tracking methods in the following experiments.

Evaluation performance measures. To evaluate the per-
formance of the tracking methods in the fluorescence
spot tracking application, we employ the same Optimal
Sub-Pattern Assignment metric for tracks (OSPA-T), used
in [11] and [35]. This error metric can be seen as the sum of
cardinality and location errors. The cardinality error can be
interpreted as errors related to missed or false tracks while
the location error combines both track accuracy and the la-
beling (or mismatch) errors.

For quantitative comparison with previous pedestrian
tracking methods and for consistency with their evaluation
scheme, we used the popular CLEAR MOT performance
measures [6]. The multi-object tracking accuracy (MOTA)
combines errors such as false positives (FP), false negatives
(FN) and identity switches (IDs) into a single number. The
multi-object tracking precision (MOTP) measures the lo-
calization accuracy of trajectories. Mostly lost (ML) and
mostly tracked (MT) scores [25] respectively represent how
many targets are tracked for less than 20% and more than
80% of their life span based on ground truth trajectories
(GT). We also report the tracking recall and precision.

6.2.1 Fluorescence spot tracking

We first apply our proposed JPDAm and 3F-JPDAm in a
challenging biological application: tracking numerous sub-
cellular structures in fluorescence microscopy sequences.
These structures are seen as small moving bright spots that
can appear or disappear from the field of view or be oc-
cluded by other structures. Our sequences include 300
frames and comprise a time-varying number of targets (on
average ≈ 204 spots per frame) moving inside a cell mem-
brane with an effective region ≈ 230×230 pixels.

Method Location↓ Cardinality↓ OSPA-T↓ Time↓
(Pixel) (Pixel) (Pixel) (Sec.)

MHT [11] 5.38 1.94 7.32 0.23
JPDA [35] 2.14 4.06 6.20 2.38
JPDA100 2.14 4.06 6.20 0.20

3F-JPDA100 1.94 3.22 5.16 3.13

Table 1. The averaged location, cardinality and OSPA-T errors
and processing time per frame of the spot trackers. JPDA100

matches the error of JPDA with lower computation time, while
3F-JPDA100 reduces overall error at higher computational cost.

We compare the results of our proposed single frame
JPDA (JPDA100) and three frames JPDA (3F-JPDA100) on
these sequences against two state-of-the-art spot tracking
methods: IMM-JPDA [35] and MHT [11]. To evaluate the
performance of all algorithms fairly, the same detections
were provided for all competing tracking methods using the
spot detector proposed in [11]. Moreover, since a single
motion model (constant velocity) describes the dynamic be-
havior of our structures in this application sufficiently well,
a single motion model implementation of all tracking meth-
ods was used5. All parameters for all methods were either
directly estimated or tuned manually on a training sequence
(a 30 frame movie). We used the same value for all param-
eters that are in common between the methods: detection
probability pD = 0.77; clutter rate λ= 1; gate size dG = 4;
dynamic noise qd=0.1; and measurement noise qm=1. For
all JPDA techniques including the IMM-JPDA method, the
termination and track deletion parameters were set as Td=8
and LS = 2. Note that increasing the depth or the gate size
for MHT does not yield noticeable performance improve-
ment, but significantly slows down the computation.

In Tab. 1, the average processing time6 and the tracking
results for all aforementioned methods are reported. Ac-
cording to the OSPA-T value, all JPDA algorithms track
more accurately than MHT in this application. However,
since we used a heuristic for track initiation and termina-
tion, all JPDA algorithms have higher cardinality errors due
to higher numbers of false tracks compared to MHT, which
has a principled way for target initiation and termination.
The overall performance superiority of JPDA is mainly due
to its reliability of dealing with long occlusion and complex
data association, which are frequent in this application.

As expected, our JPDA100 performs as accurately as
JPDA [35], but more than 10 times faster on average. This
faster performance is mainly due to a few frames involving
many interacting targets, which take around 640 seconds for
JPDA while our JPDAm requires only 1.5 seconds. In this
application, 3F-JPDA is computationally intractable; based
on our knowledge of its cost relative to the JPDA, we esti-
mate that it would take several weeks to complete on this

5Therefore, we abbreviate IMM-JPDA [35] as JPDA in Table 1.
6The average processing time for MHT is reported based on a Java im-

plementation, available on http://icy.bioimageanalysis.org.

http://icy.bioimageanalysis.org
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Figure 5. Our tracking results on a fluorescence microscopy sequence (top row, cropped for better readability) using 3F-JPDA100 and PETS
S2.L2 (second row) and TUD-Stadtmitte (bottom) using JPDA100.

dataset. However, 3F-JPDA100 is highly efficient and has
overall a lower OSPA-T value compared to other methods.

6.2.2 Pedestrian tracking

We demonstrate the performance of our method for vi-
sual tracking in surveillance by evaluating our results on
the popular PETS 2009 video sequences [15], in particular
those with high target density: S1.L1-2, S1.L2-1, S2.L2 and
S2.L3. We also include the sequence (TUD-Stadtmitte) [1]
with a very different setup captured from a low angle. In
all videos, tracking is performed in image coordinates us-
ing publicly available detections provided by [28] as input.
As discussed above, we use a constant velocity model for
tracking pedestrians in image space. Empirically, we find
our results are not sensitive to the exact parameter settings.
To achieve best performance, we manually tune them on a
different PETS sequence (S1.L2-2), and then fix them for
all test sequences at pD = 0.89, λ= 3, dG = 5.48, qd = 0.5,
qm=7, Td=45 and LS=15.

In Tab. 2, we compare our results against several state-
of-the art methods applied on the same sequences. Previous
figures are taken from [28, 29, 41] and the same evaluation
script is used to quantify our results. All metrics are com-
puted in 3D with a 1m hit/miss threshold. For a meaning-
ful comparison to other methods, we present the results for
the entire image, and for a cropped tracking area for each
sequence. Since the number of occlusions and crossing tar-
gets in this application is significantly lower than in fluores-

cence spot tracking, 3F-JPDA100 does not yield a noticeable
improvement compared to JPDA100. Moreover, full JPDA
has exactly the same results as JPDA100, but requires higher
processing time. Therefore, we only report the results of
JPDA100 in this setting.

The performance measures in Tab. 2 indicate that the
results of JPDA100 produce an increased number of false
tracks (higher FP) compared to the other methods. As dis-
cussed, this is mainly due to the heuristic track initiation
and termination used. Nevertheless, we can still outperform
state-of-the-art methods w.r.t. MOTA in most sequences.
The main reason is JPDA’s ability to robustly maintain tar-
gets’ identities through long occlusions resulting in higher
MT and lower FN and IDs. The processing time of JPDA100

is between 0.001 and 0.046 seconds per frame, easily en-
abling its use in real-time applications.

MOTChallenge. In addition to the above experiments, we
also present our results7 on MOTChallenge, a recent multi-
target tracking benchmark [23], featuring a number of se-
quences with substantially varying properties, such as the
number of targets present, camera motion, target density,
etc. Tab. 2 (bottom) shows our performance along with the
top three competitors with available corresponding publica-
tions at the time of submission. Although we only rely on
the provided detections and a simple dynamic model, our
approach shows very competitive performance, while being
one to two orders of magnitude faster. We achieve the over-

7http://motchallenge.net/results/2D_MOT_2015/

http://motchallenge.net/results/2D_MOT_2015/


Dataset Method MOTA MOTP GT MT ML FP FN IDs Recall Prec.
(Sequence) % ↑ % ↑ ↑ ↑ ↑ ↑ ↓ % ↑ % ↑

Pirsiavash et al. [32] 45.4 66.8 36 9 14 6 1367 38 47.1 99.5
Berclaz et al. [5] 51.5 64.8 36 16 14 98 1151 4 55.5 93.6

PETS Wen et al. [41] 57.1 54.8 36 18 8 34 1071 4 58.6 97.8

(S1.L1-2) Milan et al. [28] 57.9 59.7 36 19 11 148 918 21 64.5 91.8

JPDA100 70.0 64.8 36 21 5 108 658 10 74.5 94.7
Milan et al. [29] 60.0 61.9 44 21 11 169 1349 22 64.9 93.7
JPDA100 63.5 64.5 44 17 9 112 1279 13 66.7 95.8

Berclaz et al. [5] 19.5 60.6 43 4 29 64 2950 7 21.4 92.6

PETS Milan et al. [28] 30.8 49.0 43 7 20 227 2308 61 38.5 86.4

(S1.L2-1) JPDA100 32.8 59.8 43 9 20 230 2238 52 40.3 86.8

Milan et al. [29] 29.6 58.8 42 2 21 27 3494 42 30.9 98.3
JPDA100 32.8 57.6 42 5 15 218 3108 76 38.6 89.9

Pirsiavash et al. [32] 45.0 64.1 74 7 17 199 4257 137 49.0 95.4
Berclaz et al. [5] 24.2 60.9 74 7 40 193 6117 22 26.8 92.1

PETS Wen et al. [41] 62.1 52.7 74 27 3 640 2402 125 71.2 90.3
(S2.L2) Milan et al. [28] 56.9 59.4 74 28 12 622 2881 99 65.5 89.8

JPDA100 58.3 59.3 74 22 6 910 2468 103 70.5 86.6
Milan et al. [29] 58.1 59.8 43 11 1 549 3592 167 65.1 92.4
JPDA100 58.2 58.5 43 11 0 1051 3108 143 69.8 87.2

Pirsiavash et al. [32] 43.0 63.0 44 5 18 46 1760 52 46.0 97.0
Berclaz et al. [5] 28.8 61.8 44 5 31 45 2269 7 30.4 95.7

PETS Wen et al. [41] 55.3 53.2 44 12 9 149 1272 36 61.0 93.0

(S2.L3) Milan et al. [28] 45.4 64.6 44 9 18 169 1572 38 51.8 90.9

JPDA100 53.9 61.6 44 15 17 162 1320 20 59.5 92.3
Milan et al. [29] 39.8 65.0 44 8 19 115 2493 27 43 94.2
JPDA100 48.0 62.3 44 13 18 161 2092 23 52.2 93.4

Berclaz et al. [5] 45.8 56.7 9 1 1 117 261 5 63.1 79.2

TUD Milan et al. [28] 71.1 65.5 9 7 0 92 108 4 84.7 86.7

(Stadtmitte) JPDA100 57.9 60.0 9 4 1 120 172 6 75.7 81.7

Milan et al. [29] 56.2 61.6 10 4 0 134 357 15 69.1 85.6
JPDA100 58.9 59.8 10 4 1 116 349 10 69.8 87.4

2D MOT CEM [28] (1.1 fps) 19.3 70.7 721 8.5 46.5 14180 34591 813 43.7 65.4

Challenge SegTrack [27] (0.2 fps) 22.5 71.7 721 5.8 63.9 7890 39020 697 36.5 74.0

(Benchmark) MotiCon [22] (1.4 fps) 23.1 70.9 721 4.7 52.0 10404 35844 1018 41.7 71.1

JPDA100 (32.6 fps) 23.8 68.2 721 5.0 58.1 6373 40084 365 34.8 77.0

Table 2. Quantitative comparison results of our JPDA100 with other state-of-the-art trackers on the pedestrian datasets. The red and blue
colors indicate the best and the second best performing tracker on each metric. For each sequence, results above the line are for a cropped
tracking region, while below the line use the entire frame.

all lowest number of ID switches, which once again con-
firms the power of joint data association. Please note that
the JPDA algorithm solves the data association problem in
an online manner, whereas the closest previous approaches
belong to the class of batch processing techniques.

7. Conclusion

In this paper, we revisited the JPDA algorithm and pro-
posed an efficient and accurate approximation. We demon-
strated the validity of our approach on two challenging
multi-target tracking applications with noisy detections and

substantial occlusion. In spite of the heuristic nature of the
track initiation scheme, we showed that JPDA performs on
par or even better than state-of-the-art methods in molecular
applications and pedestrian tracking.

Our future work will explore more general applications
of this approach. JPDA is just one example of an associa-
tion/matching method used in computer vision, and we be-
lieve that our method can also be used to increase the scale
and speed at which other such methods can be applied.

Acknowledgment: This work was supported by
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object tracking using k-shortest paths optimization. PAMI,
33(9):1806–1819, Sept. 2011.

[6] K. Bernardin and R. Stiefelhagen. Evaluating multiple object
tracking performance: The CLEAR MOT metrics. Image
and Video Processing, 2008(1):1–10, May 2008.

[7] S. S. Blackman and R. Popoli. Design and Analysis of Mod-
ern Tracking Systems. Artech House, 1999.

[8] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier,
and L. Van Gool. Robust tracking-by-detection using a de-
tector confidence particle filter. In ICCV 2009.

[9] W. Brendel, M. Amer, and S. Todorovic. Multiobject track-
ing as maximum weight independent set. In CVPR 2011.

[10] A. A. Butt and R. T. Collins. Multi-target tracking by La-
grangian relaxation to min-cost network flow. In CVPR 2013.

[11] N. Chenouard, I. Bloch, and J.-C. Olivo-Marin. Multiple
hypothesis tracking for cluttered biological image sequences.
PAMI, 35(11):2736–2750, 2013.

[12] I. J. Cox and S. L. Hingorani. An efficient implementation of
Reid’s multiple hypothesis tracking algorithm and its evalu-
ation for the purpose of visual tracking. PAMI, 18(2), 1996.

[13] J. Dezert, N. Li, and X.-R. Li. Theoretical development of an
integrated JPDAF for multitarget tracking in clutter. In Proc.
Workshop ISIS-GDR/NUWC, ENST, 1998.

[14] A. Doucet, S. Godsill, and C. Andrieu. On sequential monte
carlo sampling methods for bayesian filtering. Statistics and
Computing, 10(3):197–208, 2000.

[15] J. Ferryman and A. Shahrokni. PETS2009: Dataset and chal-
lenge. In Winter-PETS, 2009.

[16] T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar track-
ing of multiple targets using joint probabilistic data associa-
tion. IEEE J. Oceanic Eng., 8(3):173–184, 1983.

[17] M. Fromer and A. Globerson. An LP view of the M-best
MAP problem. NIPS, 22:567–575, 2009.

[18] Gurobi, Inc. Gurobi optimizer reference manual, 2015.
[19] I. Heller and C. B. Tompkins. An extension of a theorem of

dantzig. Annals of Mathematics Studies., 38(1), 1956.
[20] H. Jiang, S. Fels, and J. J. Little. A linear programming

approach for multiple object tracking. In CVPR 2007.
[21] R. E. Kalman. A new approach to linear filtering and predic-

tion problems. Transactions of the ASME–Journal of Basic
Engineering, 82(Series D):35–45, 1960.
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